АННОТАЦИЯ

диссертационной работы Утеевой Райсы Акылбеккызы на тему: «Комплексная переработка фосфоритов с извлечением фосфора и получением ферросилиция, карбида кальция» представленной на соискание степени доктора философии (PhD) по образовательной программе 8D07160 — «Химическая технология неорганических веществ»

Актуальность проблемы. Анализ состояния проблемы показывает, что общие мировые запасы фосфатного сырья составляют 84,5 млрд.т., из которых 82,7 млрд.т. представляют собой фосфориты. Казахстан по разведанным запасам фосфоритов занимает шестое место в мире. Общие запасы фосфоритов в Казахстане с учетом прогнозных составляют 8 млрд.т., в том числе 3 млрд.т. в Каратауском бассейне и 5 млрд.т. в Актюбинском. Содержание P_2O_5 в фосфорсодержащих рудах бассейна Каратау составляет 15-30% (балансовые фосфатные руды) до 0,5-1,0% фосфатизированные кремний. Причем, на балансовые руды приходится только 60% запасов. Фосфориты Актюбинского месторождения содержат от 5,25 до 14% P_2O_5 и характеризуются высоким содержанием SiO_2 - 52-55%, поэтому не получили широкого применения для получения фосфора. Они могут стать ресурсом электротермии фосфора если будет создана новая технология их переработки с высокой степенью комплексного использования сырья.

На базе фосфоритов Каратау, на предприятии ТОО «Казфосфат» с использованием электротермического метода ежегодно производится от 60 до 80 тыс.т желтого фосфора. Несмотря на высокий коэффициент извлечения фосфора в товарную продукцию, составляющий около 90%, электротермический метод переработки фосфоритов связан с образованием отхода в виде шлака. Количество фосфорного шлака, образующегося при переработке фосфоритов, составляет 9-10т на каждую тонну получаемого фосфора. В связи с этим степень комплексного использования сырья не превышает 50%, фосфорный шлак не только занимает значительные земельные угодья, но и способствует ухудшению экологической ситуации в регионе. Его использование в строительной отрасли ограниченно из-за содержания в нем соединений фосфора и фтора.

Из выше сказанного следует, что для увеличения эффективности переработки фосфоритов актуальным и своевременным является создание новых безшлаковых технологий, позволяющих извлечь не только фосфор но и получать из нерудной составляющей при электроплавке фосфоритов марочную продукцию.

Целью диссертационной работы является создание новой безшлаковой технологии комплексной электротермической переработки фосфоритов с передельно высокой степенью комплексного использования сырья, при одновременном получении в электропечи карбида кальция, кремнийсодержащего ферросплава и извлечение фосфора в газовую фазу.

Задачи исследования:

- термодинамическое моделирование взаимодействия трикальцийфосфата, фосфоритов Чулактау и Чилисай с углеродом и железом в температурном

интервале от 500 до 2100°C и давлении от 0,01 до 1 бар с определением степени распределения фосфора, кальция и кремния;

- установление оптимальных условий получения продуктов карбида кальция, ферросилиция и извлечения фосфора в газовую фазу;
- -установление оптимальных технологических параметров (соотношение количества кокса и стальной стружки) для электроплавки фосфоритов Чулактау, Чилисай обеспечивающей одновременное извлечение фосфора в газовую фазу, получением карбида кальция и ферросилиция;
- укрупненно-лабораторные испытания электроплавки фосфоритов Чулактау и Чилисай с извлечением фосфора, получением карбида кальция и кремнийсодержащего ферросплава, с оценкой технико-экономической целесообразности разработанной технологии.

Объекты исследований. Фосфориты месторождений Чулактау и Чилисай, Каратауского и Актюбинского бассейнов, карбид кальция, ферросилиций.

Методы исследования.

Для выполнения поставленных задач в работе использовали следующие методы: компьютерное термодинамическое моделирование с использованием программного комплекса HSC-6.0 (Outokumpu, Финляндия), основанного на принципе минимизации энергии Гиббса; электроплавка в дуговых электропечах; планирование эксперимента с использованием рототабельного плана второго порядка (план Бокса - Хантера); математическое моделирование образования целевых продуктов; построение 3D и плоскостных изображений, с оптимизацией на их основе условий одновременного формирования карбида кальция, марочного ферросилиция и извлечения фосфора в газовую фазу.

Основные экспериментальные данные получены с применением современных методов физико-химических анализов: многоцелевого растрового микроскопа серии JSM-6490LV с системой энергодисперсионного микроанализа INSA Energy (Япония), спектрометрии с индуктивно связанной плазмой ИПС-МС Varian - 820MS, дифференциально-термического и термогравиметрического анализов (дериватограф Q-1500D) с компьютерным контролем, особенностей минералогического состава и микроструктуры фосфоритов и продуктов плавки.

Основные положения выносимые на защиту:

- результаты термодинамического моделирования влияния давления и температуры на равновесное распределение фосфора, кальция, кремния при взаимодействии трикальцийфосфата, фосфоритов месторождений Чулактау и Чилисай и их смесей с углеродом и железом, на основе которых определены оптимальные условия получения марочного карбида кальция, ферросилиция и отгонки фосфора;
- оптимальные технологические условия совместного получения методом электроплавки из фосфоритов месторождений Чулактау и Чилисай и их смесей карбида кальция и ферросилиция с извлечением фосфора в газовую фазу;
- результаты укрупненно-лабораторных испытаний электроплавки фосфоритов Чулактау и Чилисай в присутствии различного количества кокса и стальной стружки. Установлены оптимальные параметры получения карбида кальция с литражом до 230 дм³/кг и извлечением в него более 60-70% кальция,

ферросилиция марок FeSi50, FeSi45 и FeSi25 с извлечением в него более 70-80% кремния;

- расчеты технико-экономических показателей разработанной технологии.

Основные результаты исследования.

При проведении теоретических и прикладных исследований по переработке рядовых фосфоритов Чулактау и некондиционных фосфоритов Чилисай было установлено, что на технологические показатели основное влияние оказывает состав фосфоритов и шихты, количество железосодержащей стальной стружки, кокса и давление:

- полный термодинамический анализ, выполненный компьютерным моделированием показал, что при переработке рядовых фосфоритов Чулактау и Чилисай увеличение количества железа повышает степень извлечения кремния в сплав, повышает степень извлечения кальция в карбид и его литраж. Повышенное содержания углерода в шихте при переработке фосфорита Чулактау повышает степень извлечения фосфора, кальция в карбид кальция и его литраж. Однако при этом снижается извлечение кремния в сплав и концентрация в нем этого элемента. При переработке фосфоритов Чилисай увеличение в шихте углерода повышает как и при переработке фосфорита Чулактау, степень образования CaC₂ и его литраж.

Уменьшение давления существенно влияет на технологические показатели переработки фосфоритов Чулактау. Уменьшение давление от 1 до 0,01 бар снижает температуру полной возгонки фосфора на 300°C (от 1500 до 1200°C), повышает степень извлечения кремния в сплав от 80 до 98%, со снижением температуры процесса от 2200 до 1600-1800°C, а также увеличивает концентрацию кремния в сплаве практически на 10%.

Оптимизацией технологических параметров при электроплавке фосфорита Чулактау установлено, что образование карбида кальция второго и третьего сорта, литражом $250~\rm{gm^3/kr}$, ферросилиция марки FeSi25 происходит в присутствии 24-38% стальной стружки и 52-58% кокса.

При переработке фосфорита Чилисай в зависимости от количества кокса (50-58%), стальной стружки (11-40%) образуется карбид кальция со степенью извлечения Ca > 60% литражом 152-167 дм 3 /кг и ферросилиций трех марок FeSi50, FeSi45, FeSi25 со степенью извлечения Si \geq 65%.

Укрупнено-лабораторные испытания электроплавки фосфоритов Чулактау показали возможность получения карбида кальция литражом 190 дм 3 /кг, со степенью извлечения кальция до 65% и фосфора 94-97%, а также ферросилиций марки FeSi25 со степенью извлечения кремния в сплав - 80%. При плавке фосфорита Чилисай происходит образование ферросилиция двух марок: FeSi25 и FeSi45 со степенью извлечения кремния 82-85% и карбид кальция литражом >160% дм 3 /кг со степенью извлечения кальция в карбид до 60-65% и фосфора в газовую фазу на 94-98%.

Расчетная прибыль переработки фосфоритов Чулактау и Чилисай по предлагаемой технологий составляет от 103715 до 219536 тенге на 1 т фосфорита, при сроке окупаемости инвестиций от 2 до 4,5 лет и рентабельности -24,98-42,26%.

Обоснование новизны и важности полученных результатов

Новизна диссертационной работы заключается в создании безшлаковой технологии комплексной электротермической переработки фосфоритов месторождении Чулактау, Чилисай и их смесей с одновременным получением карбида кальция, ферросилиция и извлечением фосфора в газовую фазу.

Новые научные результаты заключаются в следующем:

- впервые установлено, что температура начала совместного извлечения фосфора и образования карбида кальция, силицидов железа в системе $Ca_3(PO_4)_2$ C-Fe-SiO $_2$ зависит от мольной доли кремния в формирующемся силициде железа. При увеличении мольной доли кремния в силициде железа от 0,375 до 0,66 температура начала реакции возрастает от 1557 до 1631°C;
- установлено влияние температуры на равновесную степень распределения кальция, кремния, фосфора и железа, а также на условия существования и количественные соотношения образующихся веществ (CaSiO₃, MgSiO₃, Na₂SiO₃, K₂O*SiO₂, FeP₂, FeP, Fe₂P, Fe₃P, FeSi, Fe₅Si₃, FeSi₂, Fe₃Si, Si, Si(g), SiC, SiO(g), CaC₂, Ca(g), CaF₂, CaF, CaF₂(g), CaF(g), P₂(g), P₄(g), CO) при получении карбида кальция, фосфора и ферросилиция из фосфоритов месторождений Чулактау и Чилисай;
- показано, что продукты углетермического восстановления SiO_2 в присутствии железа не являются инертными по отношению к трикальцийфосфату. Реакционная способность продуктов восстановления SiO_2 при взаимодействии с трикальцийфосфатом сопровождается с образованием газообразного фосфора. При 1600° C реакционная способность углерода по отношению к $Ca_3(PO_4)_2$ уменьшается в ряду: $(SiO_g, Si) > SiC > FeSi_2 > FeSi_2 > FeSi_3 > FeS$
- найдена температурная последовательность образования продуктов взаимодействия фосфоритов с углеродом и железом: первоначально при 900°C образуются фосфиды железа, затем при 1100°C газообразный фосфор, при 1500°C образуются силициды железа, при температуре 1800°C карбид кальция. Полный переход фосфора в газ происходит при температуре 1300-1500°C; ферросилиций образуется от 1500 до 1800°C; карбид кальция от 1800 до 2000°C;
- выявлено, что при электроплавке фосфоритов Чулактау в присутствии 52-58% кокса и 24,4-38% стальной стружки образуется карбид кальция с литражом от 245 до 248 дм³/кг (второй сортности) и ферросилиций марки FeSi25 с содержанием 20-30% кремния. При этом степень извлечения фосфора в газовую фазу составляет от 94-97%, кальция в карбид кальция от 60 до 70% и кремния в ферросплав от 70 до 80%;
- выявлено, что при электроплавке фосфоритов Чилисай CaC_2 с объемом $148-152~\rm{дm}^3/\rm{kr}$ и ферросилиций марки FeSi50 образуются в присутствии 50.8-56.5% кокса и 11.8-12.8% стальной стружки; а карбид кальция с литражом от $149~\rm{дo}~165~\rm{дm}^3/\rm{kr}$ и марка $FeSi45~\rm{выплавляется}$ при 51.2-54.2% кокса и 12.5-18.4% стальной стружки; карбид кальция с литражом от $128~\rm{дo}~167~\rm{дm}^3/\rm{kr}$ и низкокремнистый ферросилиций марки $FeSi25~\rm{ofpa3yetcs}$ при 53.4-58% кокса и 38.7-40% стальной стружки;
- при электроплавке смеси фосфоритов Чулактау и Чилисай, частичная замена фосфорита Чулактау на фосфорит Чилисай способствует увеличению

содержания кремния в ферросплаве до 41,4-42,6%, что позволяет получить ферросилиций марки FeSi45. Такая замена дает возможность использовать фосфориты Чилисай, которые, благодаря низкому содержанию P_2O_5 , не поддаются переработке традиционным методом электроплавки.

Важность полученных результатов. Полученные результаты по безшлаковой переработке фосфоритов являются важными для рационального использования фосфатного сырья (природного и техногенного). Разработанная технология позволяет увеличить степень комплексности сырья от 43,9 до 84,3% и может быть использована не только для переработки рядовых фосфоритов, но и для переработки фосфатизированных кремний, фосфатно-кремнистых пород и фосфорного шлака.

Практическая значимость и технологическая новизна разработанного способа переработки фосфоритов Чулактау и Чилисай подтверждены патентом РК на изобретения №35033, «Способ переработки фосфорита» и патентом на полезную модель №8853 KZ «Способ переработки рядового фосфорита электроплавкой».

При внедрении разработанной технологии на существующем предприятии ТОО «Казфосфат» (НДФЗ) при текущих ставках эмиссий возможно сокрашение ежегодных платежей на ≈ 4.2 млн тенге, за счет снижения платы за хранение в отвалах электротермофосфорных шлаков. Кроме того, снижение количества шлаковых отвалов позволит улучшить экологическую обстановку региона.

Соответствие направлениям развития науки или государственным программам.

Диссертационная работа является составной частью плана выполнения научно-исследовательской работы (НИР) по гранту AP14869066 «Разработка ресурсосберегающей безшлаковой технологии электротермической переработки фосфоритов» по программе прикладных исследований МОН РК «Научная и (или) научно-техническая деятельность на 2022-2025 годы», приоритету «Глубокая переработка сырья и продукции» (№ гос.регистрации 0122РК00424) и планам госбюджетных НИР ЮКУ им.М.Ауэзова, в которых соискатель являлась исполнителем.

Личный вклад докторанта в подготовку каждой публикации.

По результатам исследований в рамках диссертационной работы, опубликовано 20 научных трудов, включая 2 патента РК (1 патент на изобретение и 1 патент на полезную модель), 1 монографию, 1 статью в научных изданиях, рекомендуемых уполномоченным органом (КОКНВО МНВО РК), 5 статьей в рецензируемых научных изданиях, индексируемых в базе данных Scopus/Web of Science, 2 статьи в международных журналах, а также 9 публикаций в сборниках международных научных конференций, из них 2 статьи изданы за рубежом. По результатом исследований были получены два акта (№2 и №3 от 24.06.2024г.) о проведении укрупненно-лабораторных испытаний электроплавки фосфоритов Чулактау и Чилисай. Результаты работы внедрены в учебный процесс: акты №343, №346 и 347 от 02.06.2023г.; акт №56 от 10.04.2024г.; акт №205 от 16.07.2025г.

1. В статье «Electrothermal co-Production of Ferrosilicon, Calcium Carbide and Qaseous Phosphorus from the Chilisay Phosphorite» опубликованной в журнале

Metalurgija были проведены расчет и анализ данных, получение и обработка результатов, а также подготовка шихты для электроплавки.

- 2. В статье «Interaction of Tricalcium Phosphate with Products of Carbothermic Reduction of Silicon Oxide» опубликованной в журнале «Metalurgija» проведены обзор и анализ литературных данных, расчеты по ΔG^0 , ΔH^0 а также обработка результатов.
- 3. В статье «Production of Ferroalloys, Calcium Carbide, and Phosphorus from High-Silicon Phosphorite» опубликованной в журнале «Rasayan J. Chemistry» провела подготовку литературного обзора, обобщение, расчеты и обработка полученных данных.
- 4. В статье «Термодинамическая картина взаимодействия смеси фосфоритов Каратау и Актобе с получением фосфора, карбида кальция и ферросилиция» опубликованной в журнале «Известия Томского политехнического университета» проведены подготовка и анализ литературного обзора, расчеты и обработка результатов.
- 5. В статье «Processing of Phosphorites with Extraction of Phosphorus, Obtaining Calcium Carbide and Ferroalloy» опубликованной в журнале «Physicochemical Problems of Mineral Processing» проведена термодинамические расчеты, обсуждение и эксперименты в одноэлектродной дуговой электропечи.
- 6. В статье «Electric Smelting of Phosphorites with Production of a Ferroalloy, Calcium Carbide and Sublimation of Phosphorus» опубликованной в журнале «Engineering Journal of Satbayev University» проведена термодинамические расчеты, обсуждение и эксперименты в одноэлектродной дуговой электропечи по фосфоритам Чулактау.

Структура и объем диссертации. Диссертационная работа объемом 167 страниц включает 35 таблиц и 88 рисунков. Структурно работа состоит из введения, пяти глав, заключения, списка использованных источников, включающего 93 наименования, и 10 приложений.